Ciclo de potencia de gas

José Flavio Millán Salgado

Introducción 

El ciclo Brayton, también conocido como ciclo Joule o ciclo Froude, es un ciclo termodinámico,en su forma más sencilla en una etapa de compresión adiabática, una etapa de calentamiento isobárico y una expansión adiabática de un fluido termodinámico compresible. Es uno de los ciclos termodinámicos de más amplia aplicación, al ser la base del motor de turbina de gas, por lo que el producto del ciclo puede ir desde un trabajo mecánico que se emplee para la producción de electricidad en los quemadores de gas natural o algún otro aprovechamiento.

En la década de 1840 el físico británico James Prescott Joule planteó de manera teórica y formal, por primera vez, el ciclo Brayton. Su trabajo se limitó al ámbito teórico y termodinámico, al reconocer que la obtención de elevadas potencias mecánicas del ciclo exigiría o bien elevados costes de combustible, o sistemas de compresión de gas extremadamente grandes y resistentes, ya que Joule planteó la implantación del ciclo Brayton como un ciclo de flujo discontinuo, en el que el gas debía comprimirse mediante un cilindro y un pistón.

3.1 ciclo brayton ideal

El Ciclo de Brayton es un modelo utilizado para evaluar los trabajos en las máquinas térmicas de presión constante que utilizan un gas como fluido como el caso de las turbinas de impulsión de una aeronave. Este tipo de máquinas puede también ser utilizada como elemento motriz para impulsar un generador en centrales eléctricas. Si bien el ciclo se emplea en circuitos abiertos, con expulsión de los gases de escape de la turbina a la atmósfera, se considera en forma teórica que los mismos son reutilizados a la entrada del proceso.
El ciclo Brayton describe el comportamiento ideal de un motor de turbina de gas, como los utilizados en las aeronaves. Las etapas del proceso son las siguientes:
Admisión: El aire frío y a presión atmosférica entra por la boca de la turbina
Compresor: El aire es comprimido y dirigido hacia la cámara de combustión mediante un compresor (movido por la turbina). Puesto que esta fase es muy rápida, se modela mediante una compresión adiabática A→B.
Cámara de combustión: En la cámara, el aire es calentado por la combustión del queroseno. Puesto que la cámara está abierta el aire puede expandirse, por lo que el calentamiento se modela como un proceso isóbaro B→C.
Turbina: El aire caliente pasa por la turbina, a la cual mueve. En este paso el aire se expande y se enfría rápidamente, lo que se describe mediante una expansión adiabática C →D.
Escape: Por último, el aire enfriado (pero a una temperatura mayor que la inicial) sale al exterior. Técnicamente, este es un ciclo abierto ya que el aire que escapa no es el mismo que entra por la boca de la turbina, pero dado que sí entra en la misma cantidad y a la misma presión, se hace la aproximación de suponer una recirculación. En este modelo el aire de salida simplemente cede calor al ambiente y vuelve a entrar por la boca ya frío. En el diagrama PV esto corresponde a un enfriamiento a presión constante D→A


3.2 ciclo brayton real

Los ciclos de las turbinas de gas reales son ciclos abiertos, porque continuamente se debe alimentar aire nuevo al compresor. Si se desea examinar un ciclo cerrado, los productos de la combustión que se han expandido al pasar por la turbina deben pasar por un intercambiador de calor, en el que se desecha calor del gas hasta que se alcanza la temperatura inicial.
El uso del aire como único medio de trabajo en todo el ciclo es un modelo bastante aproximado, porque es muy común que en la operación real con hidrocarburos combustibles corrientes se usen relaciones aire-combustible relativamente grandes, por lo menos 50:1 aproximadamente en términos de la masa.
        En el ciclo Brayton se supone que los procesos de compresión y expansión son isoentrópicos y que los de suministro y extracción de calor ocurren a presión constante.


3.3ciclo brayton con regeneración

En una turbina de gas, la temperaturas de los gases de escape que salen de la turbina suelen ser mayores a la del aire que sale del compresor. Por lo tanto el aire de alta de presión que sale del compresor puede calentarse transfiriéndole calor desde los gases de escape mediante un generador como se aprecia en la figura. La eficiencia térmica del ciclo Brayton aumenta como resultado de la regeneración disminuyendo también el combustible para la salida de trabajo neto.




3.4 ciclo brayton con interenfriamiento y 3.5 ciclo brayton con recalentamiento

Lo que se hace en este ciclo básicamente es aumentar la cantidad de ciclo ya sea para la compresión (interenfriamiento) como para turbina (recalentamiento) aproximando cada proceso al isotérmico disminuyendo su trabajo tanto de compresión como de expansión. 

La combustión en las entradas de las turbinas ocurre comúnmente en 4 veces la cantidad requerida de aire para la completa combustión, para evitar temperaturas excesivas. Por lo tanto el recalentamiento puede lograrse sencillamente rociando combustible adicional a gases de escape entre dos estados de expansión.

El trabajo neto de un ciclo de turbina de gas es la diferencia entre trabajo neto de turbina y entrada de trabajo de compresor y puede incrementar si se reduce el trabajo del compresor o si aumenta el de la turbina, o ambos. El trabajo para comprimir un gas entre dos presiones especificadas puede disminuir si se efectúa compresión de etapas múltiples con ciclo Brayton con regeneración. 

3.6 eficiencia 

El rendimiento del ciclo de Brayton de aire estándar está dado por:


conclusión 

Las turbinas de gas se describen termodinámicamente por el ciclo de Brayton. El ciclo de Brayton es un proceso cíclico generalmente asociado con la turbina de gas. Como otros ciclos de potencia de combustión interna es un sistema abierto, aunque para el análisis termodinámico es una suposición conveniente asumir que los gases de escape son reutilizados en la aspiración, lo que posibilita el análisis como un sistema cerrado. Fue nombrado por George Brayton, y es también conocido como ciclo de Joule Un motor de tipo Brayton consta de tres componentes: un compresor de gas, una cámara de mezcla, un expansor. El termino ciclo Brayton ha sido aplicado posteriormente al motor de turbina de gas. Este también tiene tres componentes: un compresor de gas, un quemador (o cámara de combustión), una turbina de expansión. El Aire ambiente es introducido en el compresor, donde es presurizado, en un proceso teóricamente isentrópico. El aire comprimido a continuación, se conduce a través de una cámara de combustión, donde se quema combustible, calentando este aire, en un proceso presión constante, ya que la cámara está abierta a la entrada y salida de flujo. El aire caliente, presurizado, a continuación, cede su energía, al expandirse a través de una turbina (o una serie de turbinas), otro proceso
referencias 

1. Hopkins, Hannah Clarke Bailey, Records of the Bailey family : descendants of William Bailey of Newport, R.I., chiefly in the line of his son, Hugh Bailey of East Greenwich, R.I. Providence, R.I.: unknown, 1895, p. 75-6. 2. "IMPROVEMENT IN GAS-ENGINES (Patent no. 125166)". Google Patent Search. http://www.google.com/patents?id=vWlxAAAAEBAJ&dq=george+brayton+1872. Retrieved 2007-07-29. 3. ^ "George Brayton's Engine". Today In Science History. http://www.todayinsci.com/B/Brayton_George/BraytonGeorgeEngine2.htm. Retrieved 2007-07-29. 4. ^ "Holland Submarines". Paterson Friends of the Great Falls. http://patersongreatfalls.com/0325pgf/00a.cgi?cr=12a01a00&hd=dhd&ft=dft. Retrieved 2007-07-29.

Comentarios

Entradas populares